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Abstract.

The design of a dynamic neurocontroller with good robustness properties is presented for a multivariable
aircraft control problem. The internal dynamics of the neurocontroller are synthesized by a state estimator
feedback loop. The neurocontrol is generated by a multilayer feedforward neural network which is trained
through backpropagation to minimize an objective function that is a weighted sum of tracking errors, and
control input commands and rates. The neurocontroller exhibits good robustness through stability margins
in phase and vehicle output gains. By maintaining performance and stability in the presence of sensor failures
in the error loops, the structure of the neurocontroller is also consistent with the classical approach of flight
control design.

I. Introduction. There is a synergistic interest by both the Control and the Neural Network com-
munities in designing neural network architectures to solve difficult control problems {1-5]. However, in most
of the applications reported in the literature. evaluations of such neurocontrollers have either been limited
to the nominal plant model used for the control design, or have pointed to poor robustness properties of the
neurocontrol design. The term "robustness” is defined here as maintaining performance and stability in the
presence of uncertainties associated with the modelling process.

Since a plant model is only a simplified version of the plant dynamics, an important criterion for the
practical design of neurocontrollers is that of robustness. The standard feedforward neural network architec-
ture with piant measurement feedback was investigated in Ref.[5]. The results reported there indicated that
this structure does not meet the robustness requirements for flight control systems. Therefore, an important
issue in the applicability of neural networks as controllers is that of devising neural architectures with good
control robustness properties. The objective of this paper is to address that issue in the context of aerospace
vehicle control with special emphasis on piloted flight. Towards that objective, results are presented and
discussed for the design/evaluation of a robust neurocontroller to provide independent control of pitch rate
and airspeed responses to pilot command inputs for an integrated airframe/propulsion longitudinal dynamics
model of a modern fighter aircraft.

The paper is organized as follows. The vehicle model and the desired closed-loop dynamics are introduced
in Section II, and are followed in Section III by the training architecture and the design of the neurocontroller.
The nominal performance and the robustness of the dynamic neurocontroller are evaluated and discussed in
section IV,

I1. Vehicle Model. The vehicle model consists of an integrated state-space representation for a
modern fighter aircraft powered by a two-spool turbofan engine and equipped with a two-dimensional thrust-
vectoring and reversing nozzle. The flight condition used in this application is representative of the STOL
(Short Take-off and Landing) approach-to-landing task, with an airspeed of V; = 120 Knots. a flight path
angle of 4o = —3 deg, and a pitch attitude of §p = 7 deg. The linearized dynamics of the vehicle model are
of the form

Z = AZ + Bi,, z=C%; (1)

where the state vector is

5 = [v,w,Q,0,h, N2, N25, P6, T41B)", ' (2)

u being the aircraft body axis forward velocity (ft/sec), w the aircraft body axis vertical velocity (ft/sec),
Q the aircraft pitch rate (rads/sec), 6 the pitch angle (rads), h the altitude (ft), N2 the engine fan speed
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(rpm), N25 the core compressor speed (rpm), P6 the engine mixing plane pressure (psia), and T4IB the
engine high pressure turbine blade temperature (°R). In Eq.(1), the control input vector is

i, = [WF, §TV]T; (3)

where WF is the engine main burner fuel flow rate (lbm/hr), and éTV is the nozzle thrust vectoring angle
(deg). The vehicle outputs to be controlled are

z=[V, QI (4)

where V' is the aircraft velocity in ft/sec, and @ is the pitch rate in deg/s. The system matrices A, B, and
C are available in Ref.[6]. Open loop analysis indicates that the airframe is statically unstable with a highly
unstable pitch mode, and that the response of the controlled outputs Z is strongly coupled to the control
inputs &,.

The control design objective is to design a control system that provides decoupled command tracking of
velocity and pitch rate from pilot control inputs with aircraft responses compatible with Level I handling
qualities requirements [7]. The desired response dynamics are selected to be of the form

im = AmZm + BmZsgr, Z. = Cmim; (5)

with Zs5gp = [VSEL,QSEL]T where Vsgr is the pilot velocity command in ft/s, and Qsgr is the pilot
longitudinal stick deflection in inches; and 2, = [V, QC]T, where the subscript “c” refers to the ideal response
in V and Q with units of ft/s and deg/s respectively. The system matrices 4,,, By and C,, are the state-
space representation of the ideal response transfer functions listed in Ref.[6].

Actuator models were also used in the control design and evaluation. The fuel flow actuator was modelled
as

Gwr(s) =10/(s+ 10) . 50/(s + 50); (6)

with a maximum fuel flow rate |W F|mqaz = 10,000lbm/hr, and a rate limit |W Flmaz = 20,000lbm/hr/s.
Note that the fuel flow here corresponds to the perturbation from the trim value for the linear model. In
this study, the value |WF|__ .  is therefore chosen such that the total fuel flow limit will not be exceeded

when a perturbation of a magnitude of |W F| is commanded. The thrust vectoring actuator is modelled
as

mazx

Gsrv(s) = 15/(s + 15); (7)

with a maximum thrust vector angle |§TV| .. = 10deg, and a rate limit I6TV|W = 20deg/s. As a result,
nonlinearities appear in the control design and evaluation in the form of actuator position and rate limits.

II1. Design of a Dynamic Neurocontroller. The possibility of designing a neurocontrolier
that provides a satisfactory trade-off between tracking performance, control effort, and control rates, was
demonstrated in Ref.[5]. The neurocontroller designed in {5] was a feedforward neural network having as
inputs the vehicle outputs, the tracking errors, the error rates, and the error integrals. This neurocontroller
will be referred to in this work as a static neurocontroller. It achieved a nominal performance comparable to
that of a baseline Hoo-based controller designed for the same command tracking problem. However, the Hoo-
based controller was significantly more robust than the static neurocontroller in the presence of time-delay
and error loop failures.

A comparison of the two controllers as in Ref.[5] showed that the Ho-based controller had dynamics that
are different from the PID (Proportional+Integral+Derivative) structure built in the static neurocontroller.
The H..-based control synthesis automatically generates the controller dynamics that are necessary to achieve
the desired performance and robustness. In order to enhance the neurocontrol robustness, it is therefore
proposed to investigate procedures by which such automatic synthesis of the desired controller dynamics can
be achieved by a neurocontrol design.

For most modern multivariable control design techniques, the controller has an internal structure which
consists of a state feedback regulator together with a state estimator. It was decided to investigate a similar
structure for synthesizing a dynamic controller with good robustness properties. The training architecture
for such a neurocontrol synthesis is presented in Fig.1, where a multilayer feedforward net is trained to
track the commanded trajectories given the vehicle outputs, the tracking errors, and the state vector of the
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vehicle model. (It is noted that providing the vehicle outputs and tracking errors to the neural network
allows reconstruction of the commanded state). For each pilot selected trajectory Zsgr(t), a commanded
trajectory Z.(t) is generated from (5). Prior to training, the dynamics of the pilot command filter, the
actuators, and the vehicle model are discretized. The commanded trajectory Z.(ix) and the vehicle state
vector £(t ) are scaled into Z(ti) and Z*(ti) with scale factors that are representative of the vehicle dynamics
over the range of pilot input commands. As shown in Fig.1, the control input to the actuators, @(2:), and
the control input to the plant, 4} (tx), are normalized by their maximum value (|W Fmaz, 16TV |maez ). Due to
the time-discretization of the system dynamics, a commanded neurocontrol input generated at time t; will
only affect the vehicle output at time 2;42. During training, the weights increments at time t; are therefore
calculated from &,(tx) = 2 (tx+2) — 2*(te). This procedure ensures that, during training, the proper action
will be commanded by the neurocontroller at time ¢ to achieve the desired tracking at time t;,.

In order to maximize the tracking performance while minimizing the costs associated with high control
effort and high control rate requirements, the feedforward net of Fig.l is trained to minimize an objective
function that is a weighted sum of tracking errors, and control input cornmands and rates [4,5]. The learning
rate of backpropagation and the weights of the objective function (not to be confused with the weights of
the neural network) are the “knobs” used by the control designer to “tune” the neurocontroller such that the
design objectives are met. The commanded trajectories used for training were pitch rate doublets centered
between 2.5s and 5s with a maximum absolute intensity of 0.5in, and velocity step functions with a maximum
absolute intensity of 20 ft/sec [5]. These types of commanded trajectories represent the frequency content
of typical pilot command inputs. Towards the end of the training, the weights updates were calculated from
the pitch-rate/velocity responses to such commands in the presence of an added time delay of 50ms in both
control channels (location 8 in Fig.2) in order to improve the phase stability margin of the neurocontroller.
The network configuration in the training architecture of Fig.1 has two hidden layers of 10 neurons, and the
activation function of each neuron is given by the standard input/output response y = tanh(z).

Once trained, the two hidden-layer feedforward net is used in conjunciion with a state estimator of
the vehicle to command the control input to the actuator. In the closed-loop evaluation architecture of
Fig.2, the state vector of the vehicle is estimated from a neural simulation of the dynamics of the nominal
vehicle/actuators models. Given the vehicle output Z(tx), the tracking error &, (tx) = z.(tx) — Z(tx), and an
estimate Z(tx) of the vehicle state vector, the feedforward net trained in Fig.1 is used to generate a control
input #.(tx) as shown in Fig.2. The state estimate Z(t;) and the control input #.(tx) are then passed to the
neural estimator which estimates the next value of the vehicle state vector at time t;. In Fig.2, the A/D
and D/A converters are implemented through zero-order hold devices.

IV. Evaluation of the Dynamic Neurocontroller. The neurocontroller was evaluated
in closed-loop on siep pitch rate input commands, different from the doublets used in training. The input
commands chosen to illustrate the neurocontrol performance were defined by the step pitch rate command
QsgeL(t) = 0.5in for t < 3sec, Qspr(t) = 0 for t > 3sec; applied simultaneously with the following step
velocity command: Vsgp(t > 0) = 20ft/sec. This type of input command was chosen to illustrate the
system performance because it is quite demanding in that the pilot is commanding the aircraft to pitch up
as well as accelerate to a higher velocity.

Nominal Performance. Asshown in Fig.3, the deviation from the ideal response is small for both pitch
rate and velocity commands, while the control requirements WF and 6TV are smooth. Also shown in Figs.3c
& 3e are the corresponding control and control rate requirements with the static neurocontroller of Ref.[5].
The nominal command tracking performance with the static neurocontroller was similar to that for the
dynamic neurocontroller designed in this study, so the corresponding pitch-rate and velocity responses are not
shown in Fig.3. Fig.3c indicates that the pitch rate command 6TV generated by the dynamic neurocontroller
(6TVNN dynamic) is much smaller than the one generated by the static neurocontroller (6TV nNn static)-
Fig.3e shows that the control rate 6TV yw dynamic generated by the dynamic neurocontroller no longer
rides the actuator rate limit, as it was the case for the static neurocontroller (6TV NN static). For other
classes of step velocity commands, e.g. Vsgr(t) = —20ft/sec, the fuel flow requirement W F of the dynamic
neurocontroller is also reduced, no longer showing the oscillatory behavior as it had in the static neurocontrol
design [5]. As will be demonstrated in the next subsections, the improved tracking-performance/control-effort
tradeoff of the dynamic neurocontroller over the static neurocontroller i5.8] enhances the robustness of the
control in the presence of modelling uncertainties. Modelling uncertainties are due to negiected high order
dynamics, parameter changes due to changes in flight conditions, and the margin of error associated with



estimating model parameters based on analytical tools and experimental data. A classic specification for
robustness, also used in the military specifications for design of flight control systems [7], is that of stability
margins, specifically gain and phase margins [9].

Phase Margin. To estimate the phase robustness of the dynamic neurocontroller, the effect of the
various time-delays encountered by the signals throughout the closed-loop system was modelled by introduc-
ing a delay 74 between the actuators and the vehicle (location 3 in the closed-loop evaluation architecture
of Fig.2). The neurocontroller performance in tracking pitch rate and velocity commands is illustrated in
Fig.4 for an added delay of 74 = 50ms in the two control channels (WF and éTV). This value of 74 is
quite representative of the kinds of time delays to be expected in practical implementation of complex flight
control designs. Fig.4 also shows very little degradation of the tracking performance of the neurocontroller
in the presence of such a time-delay, and it is to be noted here that the static neurocontroller of Ref.[5]
resulted in a highly oscillatory pitch rate response with this value of 74.

Gain Margin. To analyze the robustness of the neurocontroller to uncertainties of the type that can be
modelled as gain changes at the plant output, closed-loop simulations were tried with various gain factors of
the vehicle output measurements (location v in the closed-loop evaluation architecture of Fig.2). Closed-loop
responses are illustrated in Fig.5 with a gain factor of 2 in both pitch rate and velocity measurements. It is
noted that the gain margin of the handling qualities specifications [7] is between gain factors of 0.5 and 2 in
each control channel. The performance of the neurocontroller in tracking pitch rate and velocity commands
is very satisfactory in both cases of commands. Fig.6 shows the pitch rate and velocity responses with a
gain factor of 0.55 in pitch rate measurement, and a gain of 0.6 in velocity measurement. It is noted that,
in closed-loop evaluation, the state vector of the vehicle is estimated by the neural estimator of the nominal
vehicle model. It would therefore be interesting to test the possibility of increasing the gain margin of the
neurocontroller within the handling qualities specifications by simulating vehicle modelling uncertainties in
the neural estimator. As indicated in Fig.6, the neurocontroller is still able to stabilize the vehicle, yet with
an expected loss of tracking performance, since the chosen pitch-rate/velocity command is quite demanding
in terms of control effort and control rate requirements.

Error Loop Sensor Failure. In the classical approach of flight control design, an inner loop compensa-
tion (£ — i) is first designed to provide stability augmentation, and to place the augmented plant dynamics
within the handling qualities specifications. An outer loop compensation (¢ — @) is subsequently designed
to provide decoupled command tracking in order to reduce pilot workload. The inner loop compensation
of this dynamic neurocontroller was evaluated by considering failures in the outer compensation loops, i.e.
failure in the error sensors (location « in the closed-loop evaluation architecture of Fig.2). The responses of
the closed-loop system with failure in the eq loop are shown in Fig.7. The neurocontroller very satisfactorily
tracks the velocity command and provides stable response in pitch rate, whereas both velocity and pitch-rate
responses with the static neurocontroller [5] were unstable in the presence of e loop failure. The closed-loop
responses with failure in the ey loop are shown in Fig.8. The neurocontroller performance in tracking the
commanded pitch rate is comparable to the tracking performance with the nominal vehicle model, and the
velocity response is smooth. This indicates that the dynamic neurocontroller uses pitch rate and velocity
measurements in a manner consistent with the classical idea of providing inner loop plant augmentation.

V. Conclusion. The synthesis of robust neurocontrollers for flight control was investigated via an
aircraft control design example. The multivariable control design problem was set up as the task of following
the trajectories generated from a model of the desired vehicle response dynamics to pilot command inputs.
The neurocontroller has an internal structure consisting of a state-feedback neuro-regulator operating in
conjunction with a neural estimator. This neurocontrol structure in conjunction with appropriate training
allows for automatic generation of the neurocontroller dynamics that achieve the desired performance and
robustness.

In contrast to the static neurocontroller [5], this dynamic neurocontroller achieves a satisfactory tracking-
performance/control-effort tradeoff with good robustness properties in the presence of modelling uncertainties
and error loop failures. The neurocontroller maintains performance and stability in the presence of time-
delays and vehicle output gain variations that are to be expected in the practical implementations of complex
flight control designs. Closed-loop simulations of the system also showed that the neurocontroller could track
the velocity command when the sensor measuring the tracking error of the pitch rate command would fail,
and vice-versa. The structure of the neurocontroller, which provides stability augmentation and decoupled
command tracking, is therefore consistent with the classical approach of flight control design.
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